
AVIATA: AUTONOMOUS VEHICLE INFINITE AIR TIME APPARATUS 1

AVIATA: Autonomous Vehicle Infinite Air Time
Apparatus

Axel Malahieude, David Thorne, Ryan Nemiroff, Bhrugu Mallajosyula, Yuchen Yao, James Tseng, Chirag Singh,
Eric Wong, Willy Teav, Puneet Nayyar, Zehao Rong, Daniel Lin, Ziyi Peng, Jeff D. Eldredge

Abstract—We propose a system for indefinite flight time con-
sisting of a central structure lifted by 8 autonomous multirotor
vehicles. Vehicles can be attached and detached using multi-stage
computer vision software and a custom mount. Decentralized
communications and controls software allows the system to
remain airborne even while replacing vehicles. Testing has shown
the viability of the system, with successful static docking, position
hold, and communications tests verifying the functionality of each
individual subsystem. Future testing is to be conducted on the
integration of the controls and docking subsystems. Subsequent
work will focus on autonomy of the vehicle replacement process.

I. INTRODUCTION

W ITH the increased use of unmanned aerial vehicles
(UAVs) for disaster response, package delivery, and

environmental monitoring applications, the need for systems
supporting payloads for extended flight time has increased
drastically. We propose a flexible, low-cost solution to this
problem, known as the Autonomous Vehicle Infinite Air Time
Apparatus (AVIATA). AVIATA consists of a central frame
lifted by 8 multirotor vehicles (drones), each of which can
be detached and replaced without landing the central frame.
This solution provides indefinite flight time by replacing low-
battery drones with fully charged drones, keeping the drones
charged without grounding the payload.

II. RELATED WORK AND BACKGROUND

UAVs have been very well established in research, commer-
cial business, as well as military uses. Recent developments in
technology in the past decade have introduced drone swarms
where multiple drones are flying in very close proximity.
Notable projects include Perdix [1] being developed for the
military and Intel’s drone shows [2] used for entertainment
purposes, where the drones must station keep very precise
flight paths to achieve animations and graphics. These swarm
systems are more computationally intensive than flying each
drone independently, as each drone must sense and coordinate
with nearby drones to not collide.

Another implementation of a drone swarm is where the
vehicles are physically linked to create a single, larger vehicle.
Projects include Link! [3], a NASA study to increase flight
performance and ModQuad [4], a novel approach from the
GRASP Lab at University of Pennsylvania to assemble drones
mid-air using magnets. Other projects also involve the study on
linking fixed wing aircraft at their wingtips and the resulting
aerodynamic effects [5], [6]. This rigid swarm method yields

a simpler control system as the swarm as a whole can be
governed by a single vehicle controller.

III. SOLUTION AND TECHNICAL WORK

A. Airframe

The role of the airframe subsystem is to design and build
both the physical frame and the modifications to the com-
mercial off-the-shelf drones to suit AVIATA’s uses. AVIATA
was designed around commercial off-the-shelf parts and other
parts that can be fabricated using 3D printing methods for
cost-effectiveness and ease of manufacturing. This was a
particularly significant consideration due to the team’s lack
of lab and facility access due to the COVID-19 restrictions
for a significant portion of this project’s duration.

1) Hardware: The drone is built on a DJI Flame Wheel
F550 hexacopter frame and is equipped with a Pixhawk 2.4.8
flight controller running a custom version of PX4 modified to
handle various airframe configurations of AVIATA. The drone
includes a rangefinder to more accurately determine its altitude
above the ground.

The drone propulsion setup was determined through iter-
ative testing after realization of the kit-provided motor and
propellers did not produce sufficient thrust, particularly with
the need for additional yaw control achieved through canting
the motors at an offset angle of 10◦. With a 4S lithium polymer
battery each drone is theoretically capable of producing 7.5kg
of thrust.

The major COTS and custom designed components outfitted
on each drone are listed by category below.

TABLE I: Notable Hardware Components in Each Drone

Category Item Quantity
Drone COTS Components

Frame F550 Hexacopter Frame 1
Frame Universal Landing Skids 4
Propulsion AIR2216 KV880 Brushless Motor 6
Propulsion T1045 Propeller 6
Propulsion SimonK 30A ESC 6
Propulsion 4S 5200mAh Lipo Battery 1
Control Pixhawk 2.4.8 Kit 1
Control M8N GPS and Compass 1
Control V5 915 MHz 100mW Telemetry Radio 1
Control TFmini-s Micro Lidar Module 1
Control and Docking Raspberry Pi 4 1
Docking Raspberry Pi Camera Module V2 1
Docking S3003 Servo Motor 1

Drone Custom 3D Printed Components
Frame GPS Mount (frame dependent) 1
Propulsion Canted Motor Mount 6
Control Raspberry Pi Case 1
Docking Camera Mount and Arm 1
Docking Docking Mechanism 1

AVIATA: AUTONOMOUS VEHICLE INFINITE AIR TIME APPARATUS 2

2) Frame Design: The AVIATA frame is the rigid, unpow-
ered structure for which the COTS drones dock to, the payload
is mounted, and the AprilTag [7] visual targets are placed for
the drone’s computer vision-based docking procedure.

The frame is comprised of two carbon fiber plates that
sandwich eight square carbon fiber arms mounted radially in
a spoke pattern. Square carbon fiber tubes were chosen for
the advantages in torsional strength over circular tubes and
the ease of alignment, and the A large (13.5 cm x 13.5 cm)
central AprilTag target is mounted above the center plate, and
the payload mount is mounted below the center plate. At each
end of the arms is a 3D printed docking joint and a peripheral
(6 cm x 6 cm) AprilTag target.

Fig. 1: CAD rendering of the AVIATA frame with the large
central AprilTag target and docking joints (peripheral targets

not rendered).

3) Docking Mechanism: The role of the docking mech-
anism is to facilitate the smooth integration of each drone
to the central frame during switch-offs and provide a solid
attachment to the system for stable flight.

The male connector, mounted on the individual COTS
drones, houses a servo motor that drives 4 pins which lock the
drone to the central frame. At the point of the male connector
is an aluminum plate, which when fully mated with the female
connector, creates a complete circuit that indicates that the
docking procedure is complete.

The female connector, mounted on the central frame, opens
with a large cone that provides a greater margin of error for the
controls and encourages the mating of the male connection.
As the male connector of the COTS drone slides into the
female connector, grooves ensure that the mate is completed
in the correct orientation. Once the aluminum plate contacts
the bottom of the female connector and completes the circuit,
the servo activates and locks the pins into place, securing the
COTS drone to the central frame.

B. Controls

The role of the controls subsystem is to implement cooper-
ative behavior to fly the AVIATA frame and achieve mission
tasks while supporting drone docking and undocking. Addi-
tionally, autonomous procedures should ensure safety at all
times, making emergency landings if needed, and commanding
drones to dock and undock as required for keeping the frame
airborne with sufficient battery levels. For the first phase of the
project, we have focused on the flight capabilities of the linked
vehicles, with more advanced autonomy yet to come. Because

Fig. 2: CAD rendering of the AVIATA docking mechanism
before and after docking complete.).

cooperative flight requires many of the same functionalities
as standalone vehicles, a Pixhawk running PX4 Autopilot [8]
was utilized on each drone to provide sensing and control
capabilities, with only minor modifications required.

1) Overarching Concept: Cooperative flight is accom-
plished by rigidly attaching the drones to a central frame.
This paves way to a simple realization: The frame is no
different from a regular UAV, except that different actuators
are controlled by different computers which must communi-
cate. Therefore, we begin by approaching control exactly as
standard multicopters do. This approach involves calculating
a simplified version of the system dynamics, and finding an
inverse of the dynamics to allow control. Of course, there
are additional complications with linked aircraft that arise in
the real-world, and these are elaborated on in the following
sections. To further understand the problem and gather initial
ideas for our approach, we looked to similar past achievements
such as ModQuad by UPenn [4], another example of flying
rigidly-linked multicopters with in-air attachment.

2) Control Allocation: To determine a control allocation,
standard multicopters assume that the thrust force F produced
by each rotor can be directly controlled, and that the torque
τ produced around the rotor axis is proportional to its thrust
(τ = kF) [8]. Therefore, given k, the rotor locations, and each
rotor’s direction of rotation, linear dynamics for the vehicle can
be derived using rigid body dynamics. For example, the matrix
transformation in Equation 1 represents the dynamics of a
quadcopter with arm length r and four rotors generating thrust
F1..4, with the left-hand side of the equation representing the
net force and torque.

Fx

Fy

Fz

τx
τy
τz

 =

0 0 0 0
0 0 0 0
1 1 1 1
0 −r 0 r
−r 0 r 0
−k k −k k

F1

F2

F3

F4

 (1)

Standard multicopters generate a control allocation by cal-
culating an inverse of these dynamics (also known as actuator
effectiveness), and the same is done for AVIATA. Of course,
the frame can take on many different configurations because

AVIATA: AUTONOMOUS VEHICLE INFINITE AIR TIME APPARATUS 3

any docking location could be without a drone, so the control
allocation for each configuration is precomputed and the
appropriate one is selected when a drone docks or undocks
in flight.

While force and torque can be used as inputs to the control
allocation, this proves problematic when the drones dock and
undock, since the mass of the frame changes abruptly, and
so does the required thrust. A similar discontinuity occurs
for torque. To solve this, we estimate the mass and moment
of inertia for each configuration of the frame, and use that
to calculate a control allocation that takes linear and angular
acceleration as input.

Knowledge of the acceleration capabilities of the frame also
serves as a good way to quantify its performance. For example,
knowing how much thrust is required to hover (i.e. accelerate
at 1 g), motor specifications can be appropriately chosen.
Additionally, this helped us decide on a motor tilt angle of 10◦

to increase yaw torque, explained further in section IV-B4.
For some tests of AVIATA, a unique method for calculating

inverse dynamics was used. Standard multicopters calculate
the Moore-Penrose pseudoinverse of the dynamics to produce
their control allocation [8]. While this would be adequate for
our tests thus far, it can lead to premature motor saturation for
lopsided configurations where one or more drones are absent
from the frame. For this reason, we have experimented with a
custom method for generating control allocations using linear
optimization, with the help of the Python package CVXPY [9].
Our method optimizes for maximum thrust, and then optimizes
for roll, pitch, and yaw torque when at 50% thrust (which
should be close to hover thrust). In theory, this improves
flight capability by prioritizing maximum achievable thrust and
torque within motor constraints, as well as acknowledging that
all maneuvering will occur near hover thrust. However, tests
have shown that we must be careful not to apply too much
stress on the less rigid parts of the frame, as discussed in
section IV-B4, so further improvements have been developed.

3) Cooperative Control: Control of the drones is based on
the existing control architecture in PX4, shown in Figure 3.
To fly the drones cooperatively, we choose a point in the
control cascade at which to share data among all the drones.
Before this point in the control loop, a “leader” drone is solely
responsible for all decisions and computation, but once it
shares data with the other “follower” drones, they each operate
independently.

For various reasons, we have chosen to share the attitude
& thrust setpoint (qsp combined with δTsp) among the drones
(from hereon referred to simply as “attitude setpoint”): The
leader drone solely determines the attitude setpoint in each
control cycle, and thereafter each drone independently ex-
ecutes attitude control. This decision is a tradeoff between
the required communication throughput and the guarantee of
agreement between drones. Communication throughput must
go up for lower levels of control because they operate at
higher rates, while the guarantee of agreement is lost as higher
levels of control are assigned to run independently on each
drone. Sharing the attitude setpoint is attractive because the
50Hz velocity controller that outputs the attitude setpoint is
much slower than the 250Hz attitude controller and 1kHz

attitude rate controller in the PX4 flight software (see Figure 3)
[10]. We had also anticipated acceptable variability in attitude
estimation, and additionally, the same method is used in the
ModQuad project [4]. This is not to say that sharing the
attitude setpoint is indisputably the best choice. For example,
it may be acceptable to share the attitude rate setpoint, even
if it cannot be communicated at 250Hz. Nevertheless, sharing
the attitude setpoint has worked well thus far.

Fig. 3: PX4 Multicopter Control Architecture [10]

A couple complications arise from this. First, small mea-
surement errors in compass heading result in fighting between
drones over yaw control, but this is easily mitigated by rotating
the attitude setpoint on each follower drone such that they
all have the same yaw error as the leader drone. Similarly,
drones will fight over control if offset from each other in roll
and pitch, which may occur from mechanical imperfections
and bending. Analyses and solutions are discussed in section
IV-B4, but more testing is needed before closing this issue.

Besides the attitude setpoint, other information must be
communicated for the drones to fly cooperatively. Specifically,
each drone must know the location of itself and all other
docked drones on the frame in order to select the appropriate
control allocation and use the appropriate actuator outputs
from it, as well as make the necessary coordinate transfor-
mations to account for the docking joint angles. The current
approach, assuming that humans carry out the initial drone
placement, is to manually tell each drone where it is docked
via a ground station. After takeoff, drones that dock or undock
will broadcast an announcement to the other drones. By nature
of the docking procedure, drones are commanded to dock to
a specific location and will know if they have successfully
docked to it, allowing all drones to have accurate knowledge of
the configuration at all times. Note that this mode of operation
is not yet tested because the system is not yet capable of in-air
docking.

Another procedure is needed due to the fact that any drone,
including the leader drone, can undock from the frame at any
time. When this happens, the leader drone must notify one
of the remaining docked drones that it should become the
leader. This is a fairly simple operation, with a few features
to ensure a smooth transition. First, the original leader drone
does not undock until it has confirmed that the new leader
has taken control. This is accomplished via the new leader
responding with an acknowledgement after it has successfully
transitioned modes. Communication latency may lead to both
drones sending setpoints simultaneously, so this is mitigated
by assigning an ID to each leader drone. This ID increments
every time a new leader is assigned, so follower drones avoid
confusion by only listening to the most recent leader they

AVIATA: AUTONOMOUS VEHICLE INFINITE AIR TIME APPARATUS 4

are aware of. Tests outlined in section IV-B3 reveal additional
improvements that could be made involving control continuity.

4) Simulation: Simulation has been a useful way to demon-
strate proof-of-concept before testing on real hardware. This
has been focused around demonstrating that the hardware
specs and control loops are sufficient for flight. To accomplish
this, a Python program was written to simulate rigid body dy-
namics and a simplified position controller, with the physical
properties of the frame and rotors completely configurable.
While the simulator ignores many real-world processes (for
example, it assumes rotor thrust is directly controllable), it has
allowed us to test various hardware specs, control allocations,
and PID gains to get a rough idea of what might work in
practice. Additionally, it is designed with modularity in mind
so additional features and models can be added if desired.

Another simulation option exists, which is to use existing
robotics simulation software such as Gazebo. In fact, there
exists a package for simulating drones with the PX4 software
in Gazebo [8]. However, we were unable to invest the time
needed to configure these simulations to use multiple rigidly-
connected vehicles, and prioritized real-world testing instead.

5) Software Implementation: Each physical drone carries a
Pixhawk flight controller running a modified version of PX4
v1.11 and a Raspberry Pi running a custom C++ program.
The C++ program interfaces over UART with the Pixhawk
and over WiFi with the other drones’ Raspberry Pi’s. The
modifications to PX4 and the Raspberry Pi program allow for
the cooperative behavior that has been outlined. The network
interfaces on the Raspberry Pi’s are configured to commu-
nicate via OLSRv2 mesh networking, and ROS2 is used to
facilitate these communications, including those involving a
ground station. All relevant software can be found via the
AVIATA GitHub repository (see Appendix B).

C. Communication

The role of the communication subsystem is to provide a
reliable, performant, and flexible network over which control
commands and telemetry data can be transmitted. To avoid a
single point of failure, a mesh network topology was chosen.
This network topology has the added benefit of allowing direct
communication between neighboring drones.

The Optimized Link State Routing Protocol Version 2
(OLSRv2) protocol chosen to implement this network [11].
As an existing network-layer solution, additional code im-
plementation was not needed. This protocol handles neighbor
detection and network topology control, providing the wireless
communication requirements needed.

D. Docking

The role of the docking subsystem is to design and im-
plement a software procedure for getting drones to and from
AVIATA. Idle drones will receive a docking command from
AVIATA when a fresh drone is required to replace a dying
drone, at which point they will take off, fly to the system
using GPS, and transition to a computer vision-based system
for the finer aspects of mechanical docking before officially
joining the swarm.

Computer vision is used because of uncertainty when using
GPS and the high level of precision and accuracy required
to dock a drone. On-board GPS guarantees location up to
2.5 meters, which is far from the centimeter-level accuracy
needed. Although technologies such as RTK GPS can improve
this, computer vision was deemed to be more robust to
external factors such as slight movement of the airborne frame
and possible communication delays in transmitting the GPS
location of the drone’s assigned docking location.

The general control flow during docking is a simple loop
featuring a PID controller that takes a camera frame as its
input and calculates new velocity setpoints for x, y, z, and
yaw to output to the drone’s flight controller. This code runs
on a Raspberry Pi 4 on-board the drone with a direct wired
connection to the Pixhawk flight controller.

Algorithm 1 Docking control flow

1: while errors > tolerance do
2: Get next image from camera
3: if AprilTag not detected then
4: Handle failure
5: end if
6: Calculate new errors based on location of AprilTag
7: Update PID controller
8: Send new velocity setpoints to drone
9: end while

Docking occurs in two stages, allowing for the use of both
a target large enough to be detected within the error of the
GPS and a target small enough to fit in the camera’s field
of view at close range. In the first stage, the drone uses a
large target placed in the center of the frame to position itself
approximately halfway between the center of the frame and the
intended docking slot, adjusting the drone’s yaw to maximize
the use of its horizontal field of view. The first stage of docking
ends when the drone can reliably detect the smaller target
near its intended docking slot. In the second stage, the drone
positions itself horizontally above its intended docking slot
before descending vertically into the slot. Failure to identify
either target during docking is handled by a robust error-
handling system, which determines whether to hold position,
ascend, re-attempt an earlier stage, or abort docking based on
the current drone state and previous target detections.

AprilTag [7] was chosen for this part of the docking subsys-
tem due to its high accuracy and performance in determining
the 3D location of a detected target in a given camera frame.
This library allows us to reliably calculate how offset the drone
currently is with respect to the target we wish to minimize our
distance to, and this offset is the error used to update the PID
controller.

Finally, a circuit controlled by the Raspberry Pi is used to
detect when a drone has achieved docking. 2 GPIO pins on the
board are used, one as output and the other as input. By placing
a conductive material in the docking joint and wiring the GPIO
pins such that the circuit is completed when the drone is fully
coupled with the joint, a simple switch is created. When the
switch is closed, the Raspberry Pi knows that the drone is
ready to officially join the AVIATA swarm.

AVIATA: AUTONOMOUS VEHICLE INFINITE AIR TIME APPARATUS 5

Fig. 4: Aerial diagram of AprilTag targets on the AVIATA
frame. A docking joint is located at each peripheral target,
and the central target is used for the first stage of docking.

IV. EXPERIMENTAL RESULTS

A. Airframe

A final design for the proposed 8-drone airframe with
docking mechanisms has not been implemented yet. Instead,
several individual systems were used to test controls and
docking in a simpler environment. The specific airframe setups
are described more in their respective sections.

1) Future Work: Now that the 4-drone system and docking
subsystem have been tested, the next step is to integrate
the docking subsystem on to the 4-drone test. Once stable
flight has been demonstrated with the docking mechanism,
the team will move on to finalizing an 8-drone design capable
of carrying a payload.

B. Controls

Two systems were built to test linked multirotor control.
First, a two-drone frame was built by connecting two drones
with carbon-fiber tubes attached to 3D-printed mounts. This is
depicted in Figure 5. This design was chosen to serve as the
simplest possible starting point for testing cooperative control
of multiple rigidly-attached drones. The second system was a
four-drone frame of equal size to the final eight-drone design,
with differences being that there were four drones instead of
eight, and static attachments were used rather than docking
mounts. The temporary 3D-printed mounts and center support
were connected using similar carbon-fiber beams as in the final
design. The four-drone frame is depicted in Figure 6.

Next steps include outfitting the four-drone frame with
actual docking mounts before finally moving on to the final
frame design.

The DJI Flame Wheel F550 hexacopter design was used for
all tests. For the two-drone apparatus, each drone was equipped
with a 5200mAh 3S LiPo battery, HobbyPower 2212 920KV
motors, and GemFan 1045 propellers. For the four-drone tests,
a 5200mAh 4S LiPo battery was used with T-motor 2216
880KV motors and T-motor 1045 propellers. This hardware
was chosen to be suitable for any potential continuation of
the project.

Fig. 5: Two-drone frame. The top image is its representation
in the Python simulator, the middle image is the CAD model,
and the bottom image is a photo of the real system.

Fig. 6: Four-drone frame in flight

1) Attitude Control: While we did not set many specific
requirements for flight, the frame should be capable of holding
position and following waypoints. To this end, the frame
should have sufficient attitude control, which can be verified
via flight logs and visual observation of the flights. In this
section, the analysis will focus on the flight logs. See Appendix
A for recorded flight videos that may provide further insight.

To test attitude control, the leader drone was commanded
via manual control stick input from an RC transmitter. Trial
and error was required in order to adjust the controller gains,
but eventually we arrived at gains that worked adequately.
Figure 7 shows the roll setpoint taken directly from the
control stick compared with the estimated roll angle for each
drone on the two-drone apparatus. Roll angle is analyzed
here because it is the more difficult axis to control for the
two-drone frame. This test, combined with observations from
other tests, provides us with confidence that the multi-vehicle
frames have comparable maneuverability to that of standalone
multicopters. Although the commanded angles are small, this
test exhibits adequate tracking for roll angle. Additionally,
this demonstrates negligible latency and packet loss over the
wireless mesh network. Because roll estimate is determined
independently by each drone’s on-board sensors, we expect
the roll estimate plots to look identical and have no relative
time difference. Ideal communication would yield the same
for roll setpoint, but network latency would cause a relative

AVIATA: AUTONOMOUS VEHICLE INFINITE AIR TIME APPARATUS 6

time shift in the roll setpoint on the follower drone. Luckily,
no shift is observed, and the plots look nearly identical, so we
can conclude negligible latency and packet loss.

After scaling up to four drones, no difference in network
performance was observed. However, there was a larger off-
set in attitude between individual drones due to bending at
the joints and other mechanical imperfections. Nevertheless,
maneuverability was still adequate.

Fig. 7: Attitude control roll setpoint compared with estimated
roll angle for each drone in the two-drone frame. The roll axis
is perpendicular to the connecting beam between the drones.
The top graph is for the leader drone, while the bottom graph
is for the follower drone.

2) Position Hold: Holding position in flight is a basic
yet vital requirement for this system. Although we have not
set quantitative requirements here, we can report that both
the two-drone and four-drone frames had the ability to hold
position while remaining smooth and stable in flight, even in
the presence of moderate wind. The two-drone frame exhibited
similar position hold accuracy to that of a standalone drone.

There are a couple caveats to mention. First, after manually
adjusting the yaw setpoint during a flight of the four-drone
frame, the apparatus became unstable and exhibited large,
low-frequency oscillations in roll and pitch. We believe this
can be mitigated with further controller tuning and software
improvements. Second, unrelated software bugs prevented us
from achieving long-duration flights with the four-drone frame,
so at this time there is less which can be said about its
capabilities.

Videos demonstrating position hold can be found in Ap-
pendix A.

3) Leader Transfer: AVIATA has several unique require-
ments in order to enable cooperative control of a structure with
indefinite flight time, one of which is passing the leadership
role between drones in flight. We have focused on implement-
ing leader transfer because it does not require docking and
undocking during flight, which our hardware is not yet capable
of.

Recall that the leader drone is responsible for position con-
trol, and determines an attitude setpoint for all drones on the

frame. A “leader transfer” is the act of gracefully transferring
this role: The new leader begins running position control and
broadcasting attitude setpoints, while the previous leader stops
position control and begins listening to attitude setpoints. In
our tests, the new leader is commanded to hold its current
position. While no state information needs to be transferred
between the drones, they are expected to independently and
adaptively estimate the thrust required to hover.

Test results from a flight of the two-drone frame revealed
that we needed to modify PX4 to enable the hover thrust
estimator in attitude control mode, as we saw the new leader
begin commanding the default hover thrust, indicating it had
not been updating its estimate.

Test results from a flight of the four-drone frame show good
stability during the transfer. However, the new leader again
started out commanding too little thrust (shown in Figure 8),
leading to a small deviation in altitude. Ultimately, there was
no danger to the integrity of the flight and a quick recovery
was made, but it is clear our efforts to maintain continuity in
thrust did not work as planned. More testing is needed, but
it may be that the hover thrust estimator does not perform
as we’d hoped, and transferring additional information (e.g.
integrator buildup) may help ensure continuity.

Videos demonstrating leader transfer can be found in Ap-
pendix A.

Fig. 8: Total thrust during leader transfer, from the perspective
of the new leader. The background color change indicates
when the vehicle becomes the leader. For the purposes of this
analysis, the thrust can be considered unitless.

4) Problems and Mitigations: During the first tests with
the two-drone frame, a couple of issues were noted. The first
problem was inconsistent altitude control. We attributed this
to typical uncertainty in the GPS and barometer when flying
close to the ground, as we conducted tests just a few meters
above the ground. We desired better performance so that flights
would be more predictable, and so potential docking tests
would be more likely to succeed. To improve altitude hold,
we installed a TFmini LiDAR on two of the drones (note that
only the leader drone needs to use it), and this was successful
in achieving consistent altitude hold within a few centimeters.

The second problem was a lack of yaw control authority,
made evident by motor saturation in the flight logs. This made
sense because the two-drone frame, for example, has twice
the yaw torque capability of a single drone, but far more
than twice the moment of inertia in the yaw axis. To improve
yaw control authority, we mounted each motor at a 10 degree
angle to “amplify” its contribution to yaw torque on each
drone. This preserved each drone’s ability to fly on its own

AVIATA: AUTONOMOUS VEHICLE INFINITE AIR TIME APPARATUS 7

while still creating ample opportunity for more force vectors to
apply yaw torque on the combined frame. The improvement in
maximum yaw torque was roughly 7-fold. These two solutions
were spawned with the help of our CDR reviewers, and we
would like to recognize them for their thoughtful suggestions.

The four-drone frame had its own unique problems. First,
we noticed oscillations or “wobbling” of individual drones
caused by torsion on the booms holding each drone (see Figure
9). This was clearly caused by torque applied by each drone
in efforts to maintain attitude control for the frame, and is a
good example of where we cannot assume perfect rigidity of
the frame. After further analysis, it was determined that yaw
control in particular was to blame for the wobbling, not roll
and pitch as one might expect. Although yaw control has no
net effect on roll and pitch, it was causing significant torque in
those axes on individual drones. Based on this, we updated our
control allocation generator to impose a limit on the torque that
could be applied around the booms. However, we still allowed
some of this torque since it was vital for yaw control authority.
Subsequent tests showed that the new control allocation was
successful in eliminating the wobbling without worsening yaw
control.

Fig. 9: Roll angle oscillations of one of the drones during a
flight of the four-drone frame, captured over 10 seconds. The
drone wobbled about the axis of the boom.

In addition, we saw a control issue arising from bending
joints in the four-drone frame. Generally, issues can arise when
the drones are offset from each other in attitude. An obvious
way this can occur is bending where the booms connect to
the central payload, as the drones lift the frame from the ends
the booms. This creates a scenario like the one in Figure 10.
While the effect was small during nominal testing, we had
a chance to see detrimental effects after unrelated difficulties
led to cracking the temporary 3D-printed central support of the
four-drone frame. This led to significant bending that caused
the frame to lose altitude shortly after takeoff. Looking at
Figure 10, this is clearly explained by the conflict between
attitude control, which wants to decrease the thrust of all
drones, and altitude control which wants to maintain thrust.
This conflict leads to undesirable behavior, especially because
the controllers use integral control which will build up quickly.

Fig. 10: Example of how drones may be offset from each other
in attitude.

Lastly, the four-drone frame still had persisting yaw issues,
even with all drone motors slightly canted at the 10 degree
angle. In fact, it was discovered that this was simply the
worst of the effects of “bending” or offset attitudes between
the drones. In some flights, we observed the frame would
have a slow yaw drift in one direction (see Figure 11), which
correlated to about one full revolution every 20 seconds. While
the changing yaw could be disorienting for a pilot, manual
flight could be safely sustained. However, this issue may be
in part to blame for the observed instability during autonomous
position hold.

Fig. 11: Attitude control yaw setpoint compared with estimated
yaw for the leader drone in the four-drone frame. Top graph
is the yaw position, and the bottom graph is the yaw rate. The
discontinuous jump corresponds to the graph wrapping around
180 degrees.

We have concluded that this problem is in part due to the
imperfection of the four-drone test assembly which causes the
drones to have unaligned attitude readings, which is related
to the previous issue discussed. In this case, the misalignment
is causing each of the AVIATA drone’s onboard computers
to improperly handle the attitude setpoints. We come to this
conclusion from the pitch bias present in the leader drone as
seen in Figure 12. Each drone performs desaturation to prevent
the motor control exceeding the motor’s capabilities (i.e. going
above 100% or below 0% thrust). Furthermore, each drone
performs its own desaturation calculation as though it were
controlling the entire frame, but only utilizes the motor outputs
corresponding to its own motors. Performing desaturation
on all the motor outputs is important for stability, but it
only makes sense if the drones agree on the motor outputs.

AVIATA: AUTONOMOUS VEHICLE INFINITE AIR TIME APPARATUS 8

Unfortunately, the drones share attitude setpoints, not motor
outputs, so when they measure slightly different attitudes,
they will have different motor outputs, and so each drone’s
prediction of the others’ motor outputs is less meaningful.
Additionally, the problem is exacerbated by the fact that yaw
has a relatively low priority when PX4 performs desaturation.
Thus, we see this yaw drift as a culmination of the attitude
offset desaturation problem.

Fig. 12: Actuator controls in roll, pitch, and yaw, captured
from the leader drone from same flight as Figure 11. The
drone has a clear forward pitch bias.

In order to prevent the detrimental effects of offset attitudes,
we established a reference attitude that is assumed to be
the attitude of the frame. Initially, the reference attitude was
simply chosen to be the attitude of the leader drone. The leader
would broadcast its attitude to the follower drones periodically
(2Hz), and each follower would compute the offset between
its own attitude and the reference it received. By applying this
offset to the attitude setpoint, each drone would work to drive
the reference attitude to the desired setpoint. This prevents
the drones from fighting each other, since they are aware how
they are offset from each other and assume that this offset
should be maintained. Initial tests confirmed no bugs with the
new implementation, but we did not achieve enough flight
time to assess the improvement in flight performance before
our project was concluded. Even without results, it should
be mentioned that this strategy can be improved by using
an average of the drones’ attitudes as the reference, instead
of the leader drone’s attitude. At the cost of implementation
complexity, this would accomplish better continuity when
switching leaders, and make the body Z-axis of the reference
attitude more closely aligned with the direction of net thrust.
This latter improvement would decrease reliance on integrators
in position control.

C. Communications

Only the physical performance of the communication sys-
tem was tested, as simulation would be insufficient to de-
termine network performance in practice (due to the impor-
tance of hardware performance on network behavior). The
communications testing setup consisted of 3 physical devices,
arranged in two configurations: a straight line, and an equi-
lateral triangle. Randomized packets of size 1KB were sent
with a random interval between 4500-5000 microseconds. The
difference between send and receive time (the delay) was
measured for each packet. The results of these tests are shown
below.

Fig. 13: Communications Test Results (Neighboring Nodes)

Fig. 14: Communications Test Results (1 Hop Distance)

While the delay for a one-hop node is significantly higher,
the network performance is satisfactory for this application.
We hypothesize the delay spikes observed could be caused by
the message redistributing mechanism or signal interference.
However, because these spikes are relatively infrequent, the
network is reliable enough and the latency is sufficiently low
for this application.

D. Docking

The processes within the docking subsystem can be broken
down into two main parts, characterized by the proximity of
the drone to the target. Firstly, we test the multi-stage docking
system, which is the stage during which the drone is far from
its final destination. Secondly, we test the drone’s precision
and accuracy when it is within one meter from its docking
location.

All of this was accomplished very early on in simulation.
Using Gazebo, a program which simulates the same PX4 flight
controller we use on the drones, we were able to prototype and
test all of our code. The next step was to validate these results
in physical tests.

1) Multi-stage docking: This test ensures the drone can get
within range of the peripheral target when making its initial
approach. The testing setup involved real-size targets pinned to
the ground at the appropriate locations. The drone takes off to
approximately 5 meters, find the central target and execute the
2-stage docking procedure, and initiate its landing sequence
upon being within 35cm of the peripheral target. After doing
some minor PID tuning to get steady flight, the drone was
able to successfully execute the 2-stage docking procedure
previously described. The main point of improvement is the
speed at which the 2-stage procedure executes; the drone
oscillated for roughly 20 seconds around the point at which
it is supposed to transition to the second stage. This can be
improved by either improving the PID controller, or loosening
the tolerances. The latter would likely have little negative
impact given that the drone did not oscillate far enough to
lose sight of either target.

AVIATA: AUTONOMOUS VEHICLE INFINITE AIR TIME APPARATUS 9

Fig. 15: A drone executing 2-stage docking, currently
transitioning between the stages. The central tag is on the

left, and the peripheral tag is 1 meter to its right.

2) Precision Docking: The purpose of these tests was to
fill in the gap left by the multi-stage docking test. The testing
setup included a docking guide cone and drone attachment,
which was 3D printed by the airframe team and is shown
in Figure 16. The target is pinned to the ground next to the
cone. The drone would take off to 1 meter, and execute stage
2 of docking. After each test, the PID controller was manually
tuned by analyzing data from the logs. This data also led to
developing new logic to increase precision, most notably a way
of tying the drone’s vertical and horizontal velocities together
such that the drone stays within an imaginary inverted cone.
This ensures the drone doesn’t fly too far given its altitude to
lose the target from its field of view. One item to improve
upon is the drone’s performance in windy conditions. The
smallest gust of wind is enough to blow the drone by just a few
centimeters, but at extremely low altitudes this is sufficient for
the drone to lose the target from its field of view. Nevertheless,
in calm conditions, repeatable results were obtained, so this
test can be considered a success.

Fig. 16: Testing the precision and accuracy of the PID
controller by attempting to land inside the guide cone.

3) Future Work: The next logical progression is to combine
test series 1 and 2 to enable 2-stage docking with the guide
cone at the end. The increased precision obtained from the
PID tuning performed during the second test will likely help
improve the performance of 2-stage docking as well. After-
wards, the drone will be ready for testing with the complete
docking mechanism that the airframe team has developed.

V. CONCLUSION AND FUTURE WORK

The proposed system for indefinite flight combines 8 drones
cooperatively into a central structure, allowing dynamic re-
placement of individual drones in-air. Proof-of-concept testing
has verified the core functionality of each subsystem, making
this concept a viable avenue for further development.

The airframe consists of two parts: a central unpowered
frame connecting the 8 drones, and a custom mount to which
individual drones can attach. The central airframe, consisting
of carbon fiber tubes surrouding carbon fiber plates, rigidly
supports the 8 drones surrounding it. The docking mount
uses a servomotor activated on docking by electrical contact
to lock the docked drone into place. Initial testing, while
limited, has been promising for the airframe. Four-drone flight
tests confirmed the structural integrity of the central frame,
and docking tests showed the viability of the overall docking
subsystem.

The controls software subsystem is responsible for sup-
porting the required flight functionality of the AVIATA sys-
tem, involving cooperation between drones. A leader drone
broadcasts attitude setpoints over a network to coordinate the
flight of the combined system. This network also enables the
drones to be continuously aware of the configuration of the
frame, so each can select the appropriate pre-optimized control
allocation. Additionally, the entrance and exit of drones to the
system is handled, ensuring continuity as this occurs. After
initial proof-of-concept simulations, physical testing indicated
that the proposed design can fulfill the basic functional re-
quirements. Several issues have been addressed, and a path
lies ahead for further testing and iteration.

The communications software subsystem relies on the
OSLRv2 protocol without any significant code modification
to provide a flexible, low-latency, and reliable mesh network
topology. Performance testing confirmed that this network
protocol and topology provided sufficient performance and
reliability for this application.

The docking software subsystem uses a two-phase algorithm
to precisely approach a drone’s intended target. The AprilTag
markers and corresponding library provide the 3D localiza-
tion information required to update the local PID controller.
Testing has shown that this combination provides the required
precision to successfully dock a drone within the bounds of
the docking mount.

Significant future testing is required in two areas to further
develop this system. First, dynamic docking tests must be
tested. Current docking tests focused on showing the potential
of the docking subsystem, and were therefore confined to static
tests. Future docking tests must include docking on the full
airborne system. Second, the full system must be tested. The
current tests only tested up to four drones attached to the
system. The full eight-drone system still must be tested.

Future work is required in the automation of the coopera-
tive controls system. Potential automation could replace low-
battery drones with pre-charged drones or automatically assign
certain drones to specific slots (or detect the drones in each
slot). Further automation could also automatically generate
controls mixers from individual drone data, allowing out-of-
the-box integration of arbitrary drones into the system.

AVIATA: AUTONOMOUS VEHICLE INFINITE AIR TIME APPARATUS 10

APPENDIX A
SUPPLEMENTAL VIDEOS

• Single-drone position hold: [Link]
• Two-drone position hold (without canted motors or range

sensors): [Link]
• Two-drone position hold and leader transfer (with canted

motors and range sensors): [Link]
• Four-drone position hold (bad control allocation causing

oscillations; instability after yaw input from RC): [Link]
• Four-drone leader transfer: [Link]
• Four-drone position hold (improved control allocation;

cracked frame caused bending which presumably led to
loss of altitude as explained in section IV-B4): [Link]

• Four-drone yaw bias (discussed in IV-B4), flight begins
2:15 in the video: [Link]

APPENDIX B
CODE REPOSITORY

All the code for AVIATA can be found at the following link:
• https://github.com/uas-at-ucla/aviata

ACKNOWLEDGEMENTS

These results are based upon work supported by the
NASA Aeronautics Research Mission Directorate under
award number 80NSSC20K1452. This material is based
upon a proposal selected by NASA for a grant award of
$10,811, subject to successful crowdfunding. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of NASA.

The authors would also like to thank Dr. Brett Lopez
for their valuable insights and advising.

REFERENCES

[1] “Department of defense announces successful micro-drone demonstra-
tion,” Jan 2017.

[2] “Drone light shows powered by Intel,” 2021.
[3] J. R. Cooper and P. M. Rothhaar, Link!: Potential Field Guidance

Algorithm for In-Flight Linking of Multi-Rotor Aircraft.
[4] D. Saldaña, B. Gabrich, G. Li, M. Yim, and V. Kumar, “Modquad: The

flying modular structure that self-assembles in midair,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 691–
698, 2018.

[5] J. Quinlan, J. Pei, J. Cooper, R. Busan, P. Rothhaar, W. E. Milholen,
T. Ozoroski, and C. Hartman, Technical Challenges Associated with In-
Air Wingtip Docking of Aircraft in Forward Flight.

[6] J. R. Cooper and P. M. Rothhaar, “Dynamics and control of in-flight
wing tip docking,” Journal of Guidance, Control, and Dynamics, vol. 41,
no. 11, pp. 2327–2337, 2018.

[7] J. Wang and E. Olson, “Apriltag 2: Efficient and robust fiducial detec-
tion,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2016.

[8] “PX4 Autopilot.” https://github.com/PX4/PX4-Autopilot. GitHub.
[9] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-

guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1–5, 2016.

[10] “PX4 controller diagrams.” https://docs.px4.io/master/en/flight stack/
controller diagrams.html.

[11] P. J. T. Clausen, C. Dearlove and U. Herberg, “ The Optimized Link
State Routing Protocol Version 2,” RFC 7181, RFC Editor, April 2014.

https://drive.google.com/file/d/17MPN3YuXWPa2Tr3zCoaCkMrP5wgTB7kV/view?usp=sharing
https://drive.google.com/file/d/1lVBA3GFQ6mmqD5KwunY31D5qsrgS3m11/view?usp=sharing
https://drive.google.com/file/d/1RzS1F2oMDwi4MQq4pJ4MHqYtIWTUMiF2/view?usp=sharing
https://drive.google.com/file/d/1PMH3Zv492Zn6Tusn_Edyrmnh5y5XOYfA/view?usp=sharing
https://drive.google.com/file/d/1j5jnyK5R082A3_9pCf71hVkO6GbOX9RH/view?usp=sharing
https://drive.google.com/file/d/11ozaMfRD96zO6cosFbc9Sr_xdty-XFGB/view?usp=sharing
https://drive.google.com/file/d/1PVHOaK0ouZ3CBiyOhWbkmSC2YIJ4Z-3J/view?usp=sharing
https://github.com/uas-at-ucla/aviata
https://github.com/PX4/PX4-Autopilot
https://docs.px4.io/master/en/flight_stack/controller_diagrams.html
https://docs.px4.io/master/en/flight_stack/controller_diagrams.html

	Introduction
	Related Work and Background
	Solution and Technical Work
	Airframe
	Hardware
	Frame Design
	Docking Mechanism

	Controls
	Overarching Concept
	Control Allocation
	Cooperative Control
	Simulation
	Software Implementation

	Communication
	Docking

	Experimental Results
	Airframe
	Future Work

	Controls
	Attitude Control
	Position Hold
	Leader Transfer
	Problems and Mitigations

	Communications
	Docking
	Multi-stage docking
	Precision Docking
	Future Work

	Conclusion and Future Work
	Appendix A: Supplemental Videos
	Appendix B: Code Repository
	References

